

# DataSheet Electromagnetic Flow Meter FMI100 Series - Integral

## Introduction

The operation of FMI100 is based upon Faraday's Law, which states the voltage(E) induced across any conductor as it moves at right angles through a magnetic field(B) is proportional to the velocity(V) of that conductor. For FEM100, the conductor is the conductive medium.

E=KBVD E = The voltage generated in a conductor. K = Constant. B = The magnetic field strength.

V = The velocity of the conductive medium.

D = The distance between probes.

E will be processed and output as standard electrical signal.



## **Characteristics**

No moving parts - easy to maintain; No pressure drop due to no choked flow parts.

Medium conductivity could be as low as 5µs/cm. With appropriate lining, FMI100 is good for acidic, alkali, neutral salts solutions. High accuracy: ±0.5%, ±0.3%.

FMI100 is for volume flow rate measuring, which is independent to flow pressure, temperature, density and viscosity.

Since the induced voltage is generated in the space filling with magnetic field, which is pipe average cross-section area, only a shorter straight pipe section is needed upstream and downstream, typically 5D upstream and 3D downstream.

Corrosion resistance and abrasion resistance can be achieved by choosing appropriate materials for the wetted parts(lining and extrode).

Converter features: High reliability; high accuracy; lower power consumption; stable "Zero" output; easy to use; LCD displayer for flow velocity, total flow rate etc.

Dual direction measuring - forward flow and reverse flow.

LCD displayer, easy to learn and use.

16 bit embedded processor: high speed, high accuracy, low frequency rectangle wave excitation; stable performance. lower power consumption.

Strong interference resistance capability, high accuracy.

Digital output: RS485, RS232, Hart and Modbus

### Construction



## **Applicable medium**

....

Liquid with conductivity > 5µs/cm

## **Applications**

Specifications

•Conductive liquid with conductivity  $\geq$  5µs/cm(the conductivity of raw water is 100...5005µs/cm).

- •Acidic, alkali and neutral salts solutions.
- •Mud, slurry, paper pulp etc.

•It is used widely in petrochemical, power plant, metallurgy, textile, food, pharmaceutical, paper industry, environment protection as well as water conservancy.

## Mounting



Note: Due to the accumulation of precipitation of slurry or particles of liquid, mounting the flow meter on the vertical pipe section in which liquid flows up is recommanded.

## Limit

•Not applicable to following medium: Gas, Steam and Liquid containing massive amount of gas.

•Not applicable to liquid with lower conductivity.

Not applicable to petroleum products or organic solvents.
Not good for high temperature medium due to the limit of the insulation lining material.

•Measuring is not immune to electromagnetic interference.

| Liquid with conductivity > 5µs/cm                                           |
|-----------------------------------------------------------------------------|
| 0.25 - 10m/s                                                                |
| DN25DN1800                                                                  |
| 0.25%, 0.5%                                                                 |
| ±0.15% of reading                                                           |
| 220VAC±10%; 24VDC±10% Lithium-ion battery                                   |
| Current: 420mA                                                              |
| Pulse: frequency 0-1KHZ                                                     |
| DN10—DN65: ≤2.5Mpa                                                          |
| DN80—DN150: ≤1.6Mpa                                                         |
| DN200—DN1200: ≤1.0Mpa                                                       |
| DN1200—DN1800: ≤0.6Mpa                                                      |
| 316 stanless stee, Hastelloy Hb, Hastelloy Hc, Titanium, Tantalum, Platinum |
| CR (Neoprene), F4(Teflon), PUR(Polyurethane), F46(FEP)                      |
| Carbon Steel, stainless steel                                               |
| Low frequency rectangle wave, High frequency excitation.                    |
| 160mA                                                                       |
| -20 ~90 ~130 ~180 (Refer to lining material)                                |
| Sensor: -40 ~80 ; Converter: -15 ~60 .                                      |
| ≤85%RH (20 )                                                                |
| less than 20W                                                               |
| Integral, Wafer                                                             |
| M20×1.5                                                                     |
| Grounding ring, grouding electrode, gronding pipe                           |
| Exd ib II BT 4                                                              |
| Flange                                                                      |
| IP65; IP67 (Optional)                                                       |
|                                                                             |





#### **Technical data**

•Applicable medium:

Liquid with conductivity > 5µs/cm, typically, the conductivity of distilled water is 5µs/cm, the conductivity of water is 100µs/cm, see below for conductivity of other medium:

| Liquid                             | Conductivity(s/cm)     | Liquid                       | Conductivity(s/cm)     |
|------------------------------------|------------------------|------------------------------|------------------------|
| Hydrochloric acid(40%)             | 51.52X10 <sup>-2</sup> | Potassium Chloride (AS)(21%) | 28.10X10 <sup>-2</sup> |
| Nitrate(62%)                       | 49.04X10 <sup>-2</sup> | Potassium Iodide (AS)(55%)   | 42.26X10 <sup>-3</sup> |
| Phosphate(70%)                     | 14.73X10 <sup>-2</sup> | Potassium nitrate(22%)       | 16.25X10 <sup>-2</sup> |
| Sulfuric acid(85%)                 | 98.50X10 <sup>-3</sup> | Potassium hydroxide(42%)     | 42.12X10 <sup>-2</sup> |
| Ethanol,Alcohol(95%)               | 2.6X10 <sup>-7</sup>   | Potassium sulfate(5%)        | 45.80X10 <sup>-3</sup> |
| Acetic acid(70%)                   | 2.35X10 <sup>-4</sup>  | Sodium carbonate (15%)       | 83.60X10 <sup>-3</sup> |
| Propionic Acid (70%)               | 8.5X10 <sup>-7</sup>   | Sodium Chloride (AS)(26%)    | 21.51X10 <sup>-2</sup> |
| Butyric acid(70%)                  | 5.6X10 <sup>-7</sup>   | Sodium nitrate(30%)          | 16.06X10 <sup>-2</sup> |
| Methanoic acid,formic acid(40%)    | 98.4X10 <sup>-4</sup>  | Sodium Hydroxide(50%)        | 82.00X10 <sup>-3</sup> |
| Hydrofluoric acid(30%)             | 34.11X10 <sup>-2</sup> | Sodium sulfate(15%)          | 88.60X10 <sup>-3</sup> |
| Hydrogen iodide(5%)                | 13.32X10 <sup>-2</sup> | Ammonium Hydroxide(30%)      | 1.93X10 <sup>-4</sup>  |
| Copper(II) chloride dihydrate(35%) | 69.9X10 <sup>-3</sup>  | Ammonium Chloride(25%)       | 40.25X10 <sup>-2</sup> |
| Copper(II) nitrate Gerhardite(35%) | 10.62X10 <sup>-2</sup> | Ammonium nitrate(50%)        | 36.33X10 <sup>-2</sup> |
| Copper sulfate (17.5%)             | 45.80X10 <sup>-3</sup> | Ammonium sulfate (31%)       | 23.21X10 <sup>-2</sup> |

#### 0.25-10m/s Measuring range:

Typically, it is ideal to have the flow velocity between 1m/s and 4/m. For those medium containing parcels, the flow velocity should not be more than 3m/s (considering the friction of lining and electrode). For viscous fluid, the flow velocity could be more than 2m/s, higher flow velocity helps eliminate viscous materials attached on electrode and improve the measuring accuracy.

Diagram of flow velocity, flow rate and nominal diameter relations:



Given measuring range (Q), the nominal diameter(D) could be determined by flow velocity(v) using following formula:

1. v = 1273. 24 \* Q / DN2

unit - v: [m /s], Q: [l/s], DN: [mm]

2. v = 353.68 \* Q / DN2

unit - v: [m /s], Q: [m 3/h], DN: [mm]

3. Volume flow rate is proportional to flow velocity, so the nominal diameter can be determined from given flow rate and flow velocity:

$$q_{v} = \pi r^{2} \times V \times 3600 \times 10^{-6} = \frac{\pi D^{2} \times V \times 3600 \times 10^{-6}}{4}$$
$$D = \sqrt{\frac{q_{v} \times 4 \times 10^{-6}}{3600 \, \pi V}}$$

q<sub>v</sub>: Volume flow rate (m3/h)

D: Flow meter nominal diameter (mm)

V: Flow velocity (m/s)

• Accuracy:  $\leq \pm 0.25\%$ ,  $\leq \pm 0.5\%$  under reference conditions

#### **Reference conditions for accuracy calibration**

| Item                | Condition    |
|---------------------|--------------|
| Medium temperature  | 20 °C ± 3 °C |
| Ambient temperature | 21 °C ± 3 °C |
| Pressure            | 1 bar        |
| Power supply        | 24±1%        |



| Stable duration            | 25 Mins                 |
|----------------------------|-------------------------|
| Straight pipe section(In)  | 10 x DN (DN ≤ 1200/48") |
|                            | 5 x DN (DN > 1200/48")  |
| Straight pipe section(Out) | 5 x DN (DN ≤ 1200/48")  |
|                            | 3 x DN (DN > 1200/48")  |
| Fluid state                | Uniform                 |

#### Accuracy curve(±0.5%)



5

0

0.1

0.5

| Features                                          |                                                                                                          |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Optional surge absorber                           | Protect the interface and converter, good for harsh applications.                                        |
| Auto "zero" calibration                           | See manual for details                                                                                   |
| Self-monitoring and diagnostic functions          | Catch errors of citation circuit, electrode circuit as well as convert and alert                         |
| Empty and full pipe detection                     | Detect empty or full pipe by capacitance technology                                                      |
| Instantaneous/total flow rate, dualdirection flow | Measuring both forward and reverse flow                                                                  |
| Adjust flow direction on-line function            | See manual for details                                                                                   |
| Multiple flow rate unit available                 | m3/h, l/h, kg/h, t/h, m3/m. l/m.                                                                         |
| Damping time set                                  | From 0.5 to 199.5S                                                                                       |
| Small signal removal                              | Adjustable in 0-10%, no pulse output for any signal less than settings.                                  |
| Small flow rate removal                           | Adjustable in 0-10%, output flow rate is 0 for any flow rate less than settings                          |
| Multiple outputs selectable                       | 4~20mA, 0 ~5KHz, pulse.                                                                                  |
| Display                                           | Display instantaneous flow rate in percentage, instantaneous flow rate and total flow rate at same time. |
| Totalizer reset                                   | See manual for details                                                                                   |
| Totalizer pre-set                                 | See manual for details                                                                                   |
| Multiple excitation frequency selectable          | 6.25 Hz, 12.5 Hz, 25Hz                                                                                   |
| Power supply selectable                           | DC: 18V~36V or AC: 85V~265V                                                                              |

12 m/s

10



## How to choose an electromagnetic flow meter

### 1. Understand follows before ordering

| Medium name, components, viscosity                                                           | To determine If a electromagnetic flow meter is good for the medium                                                                |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Medium Max. / Min. temperature, corrosiveness, abrasive ability. If negative pressure exists | To determine If a electromagnetic flow meter is good for the medium.<br>What kind of lining and electrode material is appropriate. |
| Pipe inner/outer diameter(mm), typical flow rate, Min./Max. flow rate.                       | Select the right flow meter nominal diameter                                                                                       |
| Highest / lowest operating pressure                                                          | To determine pressure rating of the flow meter                                                                                     |
| Mounting requirement                                                                         | Integral type or remote type                                                                                                       |
| Installation environment                                                                     | Determine the protection class                                                                                                     |

Note:

•The operating pressure must be less than the rated pressure of the flow meter;

•Min./Max. temperature in your application must be in the range of the flow meter's operating temperature. (see lining material for details);

•Select a appropriate nominal diameter for cost considering(See measuring range for details).

•Select accuracy level based on your measuring purpose and functionalities.

•Select electrode material based on medium corrosiveness;

•Select lining material based on corrosiveness, abrasive ability and temperature of the medium;

•Select integral type or remote type based on the mounting requirement.

#### 2. How to determine the nominal diameter

| Nominal<br>diameter<br>(mm) | Measurable<br>range(m <sup>3</sup> /h) | Useful measuring range(m <sup>3</sup> /h) | Nominal<br>diameter<br>(mm) | Measurable<br>range(m³/h) | Valid measuring<br>range(m <sup>3</sup> /h) |
|-----------------------------|----------------------------------------|-------------------------------------------|-----------------------------|---------------------------|---------------------------------------------|
| 10                          | 0.0142~3.3912                          | 0.0848~2.826                              | 300                         | 12.717~3052               | 76.302~2543                                 |
| 15                          | 0.0318~7.6302                          | 0.1908~6.3585                             | 350                         | 17.31~4154                | 103.86~3461                                 |
| 20                          | 0.0566~13.5648                         | 0.3392~11.304                             | 400                         | 22.61~5425                | 135.65~4521                                 |
| 25                          | 0.0883~21.195                          | 0.5298~17.6625                            | 450                         | 28.62~6867                | 171.68~5722                                 |
| 32                          | 0.1447~34.7258                         | 0.8682~29.9382                            | 500                         | 35.33~8478                | 211.95~7065                                 |
| 40                          | 0.2261~54.2592                         | 1.3565~45.216                             | 600                         | 50.87~12208               | 305.2~10173                                 |
| 50                          | 0.3533~84.78                           | 2.1195~70.65                              | 700                         | 69.24~16616               | 415.4~13847                                 |
| 65                          | 0.5970~143.28                          | 3.5819~119.39                             | 800                         | 90.44~21703               | 542.6~18086                                 |
| 80                          | 0.9044~217.03                          | 5.4259~180.86                             | 900                         | 114.46~27468              | 686.7~22890                                 |
| 100                         | 1.413~339.12                           | 8.478~282.6                               | 1000                        | 141.3~33912               | 847.8~28260                                 |
| 125                         | 2.2079~529.87                          | 13.2468~441.56                            | 1200                        | 203.5~48833               | 1221~40694                                  |
| 150                         | 3.1793~763                             | 19.0755~635.85                            | 1400                        | 277~66467                 | 1662~55389                                  |
| 200                         | 5.652~1356                             | 33.912~1130.4                             | 1600                        | 361.8~86814               | 2171~72345                                  |
| 250                         | 8.8313~2119                            | 52.9875~1766                              | 1800                        | 457.9~109874              | 2747~91562                                  |

Enlarging or reducing pipe is necessory if the flow meter inner diameter is different with the existed pipe inner diameter.

#### 3. Nominal diameter choose considerations

(1) For lower viscous liquid (like water), normally, it is recommanded to have the full pipe flow velocity in 1.0~10m/s. Please note the measuring accuracy will be affected if flow velocity is less than 0.5m/s.

(2) For liquid with higher viscosity or containing parcels, have the flow velocity no less than 2m/s, it is better to have it in 3~4m/s for selfcleaning and precipitate preventing purpose.

(3) For abrasive medium like slurry, have the flow velocity less than 2m/s(Max. flow velocity should be less than 3m/s) to minimize the abrasion to lining and electrode.

(4) For medium with low conductivity, try to have the flow velocity lower (slightly less than 0.5m/s, no more than 1m/s), since higher flow velocity makes more flowing noise, which will cause output fluctuation.



#### 4. How to determine electrode material

| Material                            | Applicable medium                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 316L                                | Applicable to: Weak corrosive medium like industrial water, water, sewage as well as acidic, alkali, and neutral salts solutions.                                                                                                                                                                                                           |  |  |  |  |
| Hastelloy B                         | Not applicable to: hydrochloric acid in all concentrations below the boiling point, also proof against the corrosion of unoxidizing acid, alkali, unoxidation salt liquid such as sulphuric acid, phosphoric acid, hydrofluoric acid, organic acid etc.                                                                                     |  |  |  |  |
|                                     | Not applicable to: Nitric acid                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Hastelloy C                         | Applicable to: oxidizing acid, e.g. nitric acid, mixed acid, or the mixed medium of the chromic acid and the sulphuric acid, also proof against the corrosion of oxidizing salts e.g. Fe+++ 、 Cu++ or containing other oxidizing agent, e.g. hypochlorite solution over normal temperature, sea water. Not applicable to: Hydrochloric acid |  |  |  |  |
|                                     | Not applicable to: Hydrochloric acid                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Titanium(Ti)                        | Applicable to: sea water, various kinds of chlorides and hypochlorite, oxidizing acid, (Including fuming nitric acid), organic acid, alkali, etc.                                                                                                                                                                                           |  |  |  |  |
|                                     | Not applica ble to: reducitc acid like Hydrofluoric, Sulfuric acid, Phosphate and Hydrochloric acid                                                                                                                                                                                                                                         |  |  |  |  |
| Tantalum(Ta)                        | Applicable to: All chemical except Hydrofluoric, alkali solution and Oleum.                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                     | Not applicable to: Alkali solutions, Hydrofluoric acid.                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Platinum(Pt)                        | Applicable to: Almost all chemical medium.                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                     | Not applicable to: aqua regia, Ammonium salt                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Stainless steel coated with Wolfram | Applicable to: Sewage, paper slurry                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Carbide                             | Not applicable to: Mineral acid, Organic Acids and Chloride.                                                                                                                                                                                                                                                                                |  |  |  |  |

#### 5. How to determine lining material

| Lining material | Symbol    | Properties                                                                                                                                                      | Max.<br>operating<br>temperature | Applicable medium                                | Nominal diameter |
|-----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|------------------|
| Neoprene        | CR        | Average abrasiveness, good for acidic, alkali, and salts solutions.                                                                                             | < 60                             | Water, sea water,<br>industrial water            | ≥DN50            |
| Polyurethane    | PUR       | With very good<br>antiabrasiveness; No good for<br>acid, alkali solutions                                                                                       | < 60                             | Slurry like mine slurry, paper slurry            | DN25-DN500       |
| Teflon          | F4 / PTFE | Stable chemical property, proof<br>against the corrosion of boiling<br>hydrochloric acid, sulphuric<br>acid, nitric acid and aqua regia,<br>concentrated alkali | °C<br>< 160                      | Strong corrosive acid,<br>alkali solution        | ≥DN10            |
| FEP(F46)        | FEP(F46)  | Same chemical properties as<br>F4, but with better tensile<br>strength and pressure<br>resistance.                                                              | °C<br>< 120                      | Corrosive acidic, alkali,<br>and salts solutions | DN10~200         |
| PFA             | PFA       | Same chemical properties as<br>F46, but with better tensile<br>strength and pressure<br>resistance.                                                             | °C<br>< 180                      | Corrosive acidic, alkali,<br>and salts solutions | DN10~300         |

#### 6. How to determine electromagnetic flow meter type

Remote type: the most widely used one. The sensor is pipe mounted. Connected by cable, the converter could be mounted hundreds meters away from sensor. Advantage: the converter could stay away from harsh on-site and is easy to read.

Integral type: the sensor and converter are integrated together. Since the connecting cable is inside of the meter, there is less interferences. Typically it is used for flow meters with smaller nominal diameter. It is no good for applications with high temperature, strong vibration or the unit needs be mounted where it is not easy to read.

#### 7. How to determine grounding ring

(1) For electromagnetic flow meter, typically, grounding is done by pipe grounding or flange grounding, but If the pipe is insulated to the

medium, a grounding ring or a grounding electrode equipped sensor is needed.

(2) 2 types of grounding ring available: Regular type and protection type, the former is good for most applications, the latter is for abrasive medium.

(3) The material of grounding ring should be compatible to medium as to the corrosiveness.

#### 8. How to determine protection class

| IP65 | Totally protected against dust; Protected against low pressure jets of water from all directions – limited ingress permitted. |
|------|-------------------------------------------------------------------------------------------------------------------------------|
| IP67 | Totally protected against dust; Protected against the effect of immersion between 15cm and 1m                                 |
| IP68 | Totally protected against dust, Protected against long periods of immersion under pressure                                    |

Note: The protection class of the sensor can be up to IP68, and up to IP67 for the converter, which implies the protection class of integral type flow meter can be up to IP67.

#### 9. How to determine a electromagnetic flow meter for food, medicine applications

Lining material: PTFE;

Housing and flange material: stainless steel;

Easy to disassembling and cleaning;

## **Dimension in mm (Integral)**



| Flange mou | nting  |     |     |     |     |                 |    |          |            |
|------------|--------|-----|-----|-----|-----|-----------------|----|----------|------------|
| DN         | L (mm) | Н   | H1  | D   | К   | n-⊄d            | С  | Pressure | Weight(kg) |
| 10         |        | 130 | 247 | 95  | 65  | 4-⊄14           | 14 |          | 6.6        |
| 15         | 160    | 135 | 252 | 95  | 65  | 4-⊄14           | 14 |          | 6.5        |
| 20         |        | 143 | 260 | 105 | 75  | 4-⊄14           | 16 |          | 6.4        |
| 25         | 160    | 123 | 240 | 115 | 85  | 4-⊄14           | 16 | PN4.0    | 6.2        |
| 32         | 165    | 150 | 267 | 140 | 100 | 4-⊄18           | 18 |          | 7.2        |
| 40         | 195    | 160 | 277 | 150 | 110 | 4-⊄18           | 18 |          | 8.3        |
| 50         | 200    | 173 | 290 | 165 | 125 | 4-⊄18           | 20 |          | 10         |
| 65         | 195    | 183 | 300 | 185 | 145 | 4-⊄18           | 20 |          | 10.5       |
| 80         | 200    | 206 | 323 | 200 | 160 | 8-⊄18           | 20 |          | 11.4       |
| 100        | 245    | 225 | 342 | 235 | 180 | 8-⊄18           | 22 |          | 14.5       |
| 125        | 250    | 255 | 372 | 250 | 210 | 8-⊄18           | 22 | FINI.0   | 17.5       |
| 150        | 300    | 287 | 405 | 285 | 240 | 8-⊄22           | 24 |          | 23         |
| 200        | 350    | 344 | 461 | 340 | 295 | 12- <i>⊄</i> 22 | 26 |          | 32         |
| 250        | 400    | 396 | 512 | 395 | 350 | 12- <i>⊄</i> 22 | 26 |          | 44         |
| 300        | 500    | 450 | 565 | 445 | 400 | 12- <i>¢</i> 22 | 28 |          | 56         |
| 350        | 500    | 510 | 625 | 500 | 460 | 16- <i>⊄</i> 22 | 30 |          | 71         |
| 400        |        | 560 | 675 | 565 | 515 | 16- <i>⊄</i> 26 | 32 |          | 94         |
| 450        | 600    | 610 | 725 | 615 | 565 | 20-¢26          | 35 |          | 106        |
| 500        | 000    | 660 | 775 | 670 | 620 | 20-¢26          | 38 | PN1.0    | 129        |
| 600        |        | 770 | 885 | 780 | 725 | 20-⊄30          | 42 |          | 203        |



| 700  | 700  | 910  | 1025 | 895  | 840  | 24- <i>⊄</i> 30 | 30 |       | 320  |
|------|------|------|------|------|------|-----------------|----|-------|------|
| 800  | 800  | 1020 | 1135 | 1010 | 950  | 24- <i>⊄</i> 34 | 32 |       | 450  |
| 900  | 900  | 1120 | 1235 | 1110 | 1050 | 28-¢34          | 34 |       | 580  |
| 1000 | 1000 | 1220 | 1335 | 1220 | 1160 | 28-⊄36          | 34 |       | 700  |
| 1200 | 1200 | 1410 | 1525 | 1400 | 1340 | 32-⊄33          | 60 |       | 900  |
| 1400 | 1400 | 1620 | 1735 | 1620 | 1560 | 36- <i>⊄</i> 36 | 68 | PN0.6 | 1150 |
| 1600 | 1600 | 1850 | 1965 | 1880 | 1760 | 40- <i>⊄</i> 36 | 76 |       | 1450 |
| 1800 | 1800 | 2040 | 2155 | 2045 | 1970 | 44- <i>⊄</i> 39 | 84 |       | 1780 |

## Dimension in mm (Wafer)





#### Wafer mounting

| DN(mm) | Pressure(Mpa) | L   | Н   | В   | b   | D   | d   | Weight(kg) |
|--------|---------------|-----|-----|-----|-----|-----|-----|------------|
| 10     |               | 100 | 285 | 152 | 102 | 90  | 10  | 3.0        |
| 15     |               |     | 290 |     |     | 95  | 15  | 3.0        |
| 20     |               |     | 298 |     |     | 100 | 20  | 4.0        |
| 25     | 4             |     | 289 |     |     | 72  | 25  | 5.0        |
| 32     |               |     | 305 |     |     | 79  | 32  | 6.0        |
| 40     |               |     | 315 |     |     | 89  | 40  | 8.0        |
| 50     |               | 120 | 329 |     |     | 100 | 50  | 8.0        |
| 65     |               | 130 | 348 |     |     | 118 | 65  | 10.0       |
| 80     | 1.6           |     | 361 |     |     | 132 | 80  | 11.0       |
| 100    |               | 150 | 379 |     |     | 148 | 100 | 15.0       |
| 125    |               | 200 | 407 |     |     | 180 | 125 | 20.0       |
| 150    |               | 200 | 438 |     |     | 220 | 150 | 26.0       |
| 200    |               | 250 | 495 |     |     | 263 | 200 | 33.0       |
| 250    | 1             | 300 | 546 |     |     | 312 | 250 | 39.0       |
| 300    | I             | 340 | 600 |     |     | 368 | 300 | 45.0       |

## **Dimensions in mm (battery powered)**



### Battery powered

| DN   | L (mm) | н       | D                                   | К    | n-¢d            | С                                                 | Pressure | Weight(kg) |
|------|--------|---------|-------------------------------------|------|-----------------|---------------------------------------------------|----------|------------|
| 10   |        | 310     | 95                                  | 65   | 4-⊄14           | 14                                                |          | 6.6        |
| 15   | 160    | 315     | 95                                  | 65   | 4-⊄14           | 14                                                |          | 6.5        |
| 20   |        | 323     | 323     105     75     4-⊄14     16 |      |                 | 6.4                                               |          |            |
| 25   | 160    | 303     | 115                                 | 85   | 4-⊄14           | 16                                                | PN4.0    | 6.2        |
| 32   | 165    | 330     | 140                                 | 100  | 4-⊄18           | 18                                                |          | 7.2        |
| 40   | 195    | 340     | 150                                 | 110  | 4-⊄18           | 18                                                |          | 8.3        |
| 50   | 200    | 353     | 165                                 | 125  | 4-⊄18           | 20                                                |          | 10         |
| 65   | 195    | 363     | 185                                 | 145  | 4-⊄18           | 20                                                |          | 10.5       |
| 80   | 200    | 386     | 200                                 | 160  | 4-⊄18           | 20                                                |          | 11.4       |
| 100  | 245    | 405     | 235                                 | 180  | 4-⊄18           | 22 PN1 6                                          |          | 14.5       |
| 125  | 250    | 435     | 250                                 | 210  | 4-⊄18           | 22                                                | FINT.0   | 17.5       |
| 150  | 300    | 467     | 285                                 | 240  | 8-⊄22 24        |                                                   |          | 23         |
| 200  | 350    | 524     | 340                                 | 295  | 12-⊄22          | 26                                                |          | 32         |
| 250  | 400    | 576     | 395                                 | 350  | 12-⊄22          | 26                                                |          | 44         |
| 300  | 500    | 630     | 445                                 | 400  | 12-⊄22          | 28                                                |          | 56         |
| 350  | 500    | 690     | 500                                 | 460  | 12-⊄22 30       |                                                   |          | 71         |
| 400  |        | 740     | 565                                 | 515  | 16-⊄26          | 32                                                |          | 94         |
| 450  | 600    | 890 615 |                                     | 565  | 20-⊄26          | 35                                                |          | 106        |
| 500  | 000    | 840     | 670                                 | 620  | 20-⊄26          | 38                                                | PN1.0    | 129        |
| 600  |        | 950     | 780                                 | 725  | 20-⊄30          | 42                                                |          | 203        |
| 700  | 700    | 1090    | 895                                 | 840  | 24-⊄30          | 30                                                |          | 320        |
| 800  | 800    | 1200    | 1010                                | 950  | 24- <i>⊄</i> 34 | 24- ₡ 34         32           28- ₡ 34         34 |          | 450        |
| 900  | 900    | 1300    | 1110                                | 1050 | 28-⊄34          |                                                   |          | 580        |
| 1000 | 1000   | 1400    | 1220                                | 1160 | 28-⊄36          | 34                                                |          | 700        |

## Installation

#### 1. Install location

Considering follows for mounting location:

- Stay away from objects or devices with strong electromagnetic fields, e.g. powerful motors, transformers etc..
- Try to install the flow meter where is dry and ventilated.
- Ambient temperature less than 60 and relative humidity less than 95%.
- Has enough space for maintainence and repair.
- Do not mount on suction side of a pump; Valve should be mounted downstream to flow meter.





#### 2. Shipping and mounting considerations

1). Do not unpack the packaging while shipping. Be careful to lining protection.



2). Mounting bracket is needed for vibrating pipe.



- 3). The actual flow direction must match the labeled flow direction on the flow meter.
- 4). Keep the flanges parallel to avoid leaking.
- 5). Have the electrode horizontal to avoid any measuring error.
- 6). The sensor's pipe section must be absolutely full.
- 7). Mounting location does not cause bubbles or negative pressure.
- 8). Be careful to the connections of pipe, sealing gaskets and sensor to avoid unwanted vortex.
- 9). The conductive medium in measuring pipe section should be uniform.

10). The sensor must be grounded separately. Grounding resistance typically is less than 100 ohm, for exproof product, it should be less than 10 ohm.



11). Mount the flow meter on the vertical pipe section in which medium flows up.

12). For remote type, signal cable must be put in a matel protection tube which is separated from power cable to avoid any signal interference





#### 3. Piping requirements

1). Straight pipe is no less than 5D upstream and 3D downstream.



3). No straight pipe is needed for reduced pipe.



5, For vertical mounting, downstream to the right angle, a no less than 2D straight pipe is recommended.



7). If a pump / valve is upstream to the flow meter, No less than 10D straight pipe is needed upstream and 3D downstream.



#### 4. Mounting direction requirements

1). For horizontal pipe, mount on the lower section of horizontal pipe; For vertical pipe, mount on where medium flows up.





2). For right angle pipes, a minimum of 5D straight pipe upstream or 3D downstream is recommended.



4). For expanded pipe, straight pipe straight pipe is needed.should be no less than 10D upstream and no less than



6). For tilted pipe, make sure the pipe is absolutely full. Refer to below.



8). For mixed medium, No less than 10D straight pipe is recommended upstream and 3D downstream.





2). For measuring accuracy, mount on the pipe section where medium flows up.



4). An exhaust valve is recommended to avoid negative pressure if pipe elevation difference is more than 5m.



6). Do not mount flow meter at the suction side of a pump.



#### 5. Large diameter pipe mounting

1). Large diameter pipe mounting can be done by reducing pipe.



2). Refer to below diagram( $\alpha = 8^{\circ}$ ) for pressure drop due to pipe reducing.



3). For medium containing parcels or precipitations, mount on the vertical pipe section where medium flows up.



5). Install valve downstream to flow meter to avoid negative pressure and improve measuring accuracy.





#### 6. Grounding

1). For stable performance, less interferences and measuring accuracy, a separated grounding is necessory for the sensor. Following diagram for mounting on metal pipe without insulating(grounding resistance < 10 ohm).



2). Mounting on plastic pipe or other pipe with insulated coating, grounding rings are needed for both side of the sensor.



## Wiring (Integral type)





## Warning:

Please be careful to differentiate 220VAC and 24VDC.
 Connecting power supply wires to signal input terminals will cause permanent damage.

Power Supply 24VDC

Power Supply 220VAC

### Connection terminals (Integral type)

|   | Symbol | Description              | Comments                               |  |  |  |
|---|--------|--------------------------|----------------------------------------|--|--|--|
| L | L      | AC 85~265v power supply  | Ac220v power supply                    |  |  |  |
| Ν | N      | AC 85~265v power supply  | Ac220v power supply                    |  |  |  |
| + | +      | DC 18~36v power supply + | 24v+ Power supply                      |  |  |  |
| _ | -      | DC 18~36v power supply - | 24v- Power supply                      |  |  |  |
| 1 | l+     | 4~20mA output+           | Load registeres <5000                  |  |  |  |
| 2 | -      | 4~20mA output-           |                                        |  |  |  |
| 3 | F+     | Pulse output +           | Passive pulse output Load current≤20mA |  |  |  |
| 4 | F-     | Pulse output -           |                                        |  |  |  |



## Wiring diagram for connecting to control system (Integral type)



1. Connecting for analog current output: 4~20mA DC signal output, Max. load resistance 500 ohm.

2. Connecting for passive pulse output: Transistor output, Pulse frequency 0~5kHz, load current 20mA.



## Order code

| FMI100-  | 025 | Α | N | В | к | F | с | 0 | Α | 5 | т | Р | Description                                 |
|----------|-----|---|---|---|---|---|---|---|---|---|---|---|---------------------------------------------|
| FMI100-  |     |   |   |   |   |   |   |   |   |   |   |   | FMI100 - integral                           |
| FMI100B- |     |   |   |   |   |   |   |   |   |   |   |   | FMI100A - wafer                             |
|          | 025 |   |   |   |   |   |   |   |   |   |   |   | DN25DN1800                                  |
|          |     | Ν |   |   |   |   |   |   |   |   |   |   | No output                                   |
|          |     | Α |   |   |   |   |   |   |   |   |   |   | 420mA output                                |
|          |     | Р |   |   |   |   |   |   |   |   |   |   | Pulse output                                |
|          |     |   | Ν |   |   |   |   |   |   |   |   |   | No display                                  |
|          |     |   | С |   |   |   |   |   |   |   |   |   | LCD display                                 |
|          |     |   |   | А |   |   |   |   |   |   |   |   | Accuracy: 0.25%                             |
|          |     |   |   | В |   |   |   |   |   |   |   |   | Accuracy: 0.5%                              |
|          |     |   |   |   | к |   |   |   |   |   |   |   | Electrode material:<br>316L stainless steel |
|          |     |   |   |   | В |   |   |   |   |   |   |   | Electrode material:<br>Hastelloy(Hb)        |
|          |     |   |   |   | С |   |   |   |   |   |   |   | Electrode material:<br>Hastelloy(Hc)        |
|          |     |   |   |   | Т |   |   |   |   |   |   |   | Electrode material:<br>Titanium             |
|          |     |   |   |   | D |   |   |   |   |   |   |   | Electrode material:<br>Tantalum             |
|          |     |   |   |   | Ρ |   |   |   |   |   |   |   | Electrode material:<br>Platinum             |
|          |     |   |   |   | S |   |   |   |   |   |   |   | Customization                               |
|          |     |   |   |   |   | С |   |   |   |   |   |   | Lining material: CR<br>(Neoprene)           |
|          |     |   |   |   |   | F |   |   |   |   |   |   | Lining material:<br>F4(Teflon)              |
|          |     |   |   |   |   | Р |   |   |   |   |   |   | Lining material:<br>PUR(Polyurethane)       |
|          |     |   |   |   |   | Q |   |   |   |   |   |   | Lining material:<br>F46(FEP)                |
|          |     |   |   |   |   | S |   |   |   |   |   |   | Customization                               |
|          |     |   |   |   |   |   | С |   |   |   |   |   | Body: carbon steel                          |
|          |     |   |   |   |   |   | S |   |   |   |   |   | Body: stainless steel                       |
|          |     |   |   |   |   |   |   | 0 |   |   |   |   | No communication                            |
|          |     |   |   |   |   |   |   | 1 |   |   |   |   | RS485(Modbus                                |
|          |     |   |   |   |   |   |   | 2 |   |   |   |   | RS232(Modbus                                |
|          |     |   |   |   |   |   |   | 3 |   |   |   |   | HART protocol                               |
|          |     |   |   |   |   |   |   |   | Α |   |   |   | No grounding ring                           |
|          |     |   |   |   |   |   |   |   | В |   |   |   | Grounding ring                              |
|          |     |   |   |   |   |   |   |   | С |   |   |   | Grounding electrode                         |
|          |     |   |   |   |   |   |   |   |   | 5 |   |   | Protect class: IP65                         |
|          |     |   |   |   |   |   |   |   |   | 7 |   |   | Protect class: IP67                         |
|          |     |   |   |   |   |   |   |   |   |   | Т |   | Power supply:<br>AC 85~265v                 |
|          |     |   |   |   |   |   |   |   |   |   | D |   | Power supply:<br>DC 18~36v                  |
|          |     |   |   |   |   |   |   |   |   |   | L |   | Power supply:<br>Lithium-ion battery        |
|          |     |   |   |   |   |   |   |   |   |   |   | Р | Standard                                    |
|          |     |   |   |   |   |   |   |   |   |   |   | Е | Ex-proof                                    |